Bus Landscapes:
Analyzing Commuting Pattern
using Bus Smart Card Data in Beijing

Ying Long, Beijing Institute of City Planning
Jean-Claude Thill, The University of North Carolina at Charlotte
1 INTRODUCTION
Human as sensors

• The increasing pervasiveness of location based services (LBS), including
 – GSM (Global System for Mobile Communications)
 • Namely cell phone data
 – GPS (Global Positioning System)
 • Trajectories
 – SNS (Social Networking Services)
 • Check-in, Twitter, Facebook, Sina Weibo
 – Wi-Fi (wireless fidelity)
• Rich in spatiotemporal information (big data)
• Better for describing and understanding urban structure
Smart card data from public transportation

• Smart card data collected by automated fare collection systems
 – Bus
 – Subway
• Since 1990’s the use of smart card has become significant (Blythe, 2004)
• Overwhelmingly adopted by Chinese cities
 – Over 100 cities in 2007
• With precise bus trip information (both boarding and getting off)
 – A spatial resolution of bus stop
 – A temporal resolution of second
Existing researches using SCD

- Most researches advocate providing decision making for planning and design of public transportation system (see Pelletier et al. (2011) for a review).
 - This is also the focus of Chinese papers
- In South Korea, Joh and Hwang (2010) analysed the trip trajectories using four million individuals’ trips from the bus SCD, and correlated them with land use characteristics in the Seoul Metropolitan Area.
- In the U.K., Roth et al. (2011 coauthored with Michael Batty@CASA) used real-time “Oyster” card database of individual person movements in the London subway to reveal the polycentric urban structure.
- Less attention was paid on analyzing jobs-housing relationships as well as commuting pattern of a metropolitan city.
This talk is regarded with

• Using Beijing bus SCD for identifying cardholders’ housing and job places
• Identifying commuting trips of cardholders
• Analyzing and mapping bus commuting pattern of Beijing
2 DATA
Bus lines

- The Beijing Metropolitan Area
 - 16410 sqkm
- 1287 bus lines
- Two types
 - Distance-fare (long dist, inner city to suburb)
 - Fixed-fare (short dist, within inner city)
Bus stops

- 8691 bus stops
- The spatial resolution of identification
- The average distance between two stops
 - 231 m
Traffic analysis zones

- 1118 TAZs
- For aggregating identification results
 - Originally in the bus stop level
Land use pattern

- 133503 parcels in the BMA
 - 29112 residential parcels
 - 57285 parcels with job positions
 - Job parcel

- For calculating residential or job potential of each stop
 - In case of periodic identification results using one-week data
Bus SCD in Beijing

- One week in April 2008 from
 - Monday to Sunday
 - Subway not included
- 80 million records for 8.5 million cards/persons
 - One record for a bus riding of a cardholder
 - 1.3 daily bus ridings per person

- Anonymous card
- Over 90% bus riders use smart cards till April 2007
SCD data structure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exemplified Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card ID</td>
<td>“10007510038259911”, “10007510150830716”</td>
</tr>
<tr>
<td>Card Type</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Line ID</td>
<td>602, 40, 102</td>
</tr>
<tr>
<td>Line Type</td>
<td>0, 1</td>
</tr>
<tr>
<td>Driver ID</td>
<td>11032, 332</td>
</tr>
<tr>
<td>Vehicle ID</td>
<td>111223, 89763</td>
</tr>
<tr>
<td>Departure Data</td>
<td>2008-04-08</td>
</tr>
<tr>
<td>Departure Time</td>
<td>“06-22-30”, “11-12-09”</td>
</tr>
<tr>
<td>Departure Stop</td>
<td>11, 5, 14</td>
</tr>
<tr>
<td>Arrival Time</td>
<td>“09-52-05”, “19-07-20”</td>
</tr>
<tr>
<td>Arrival Stop</td>
<td>3, 14, 9</td>
</tr>
</tbody>
</table>
Trip count (bus riding) for each day

<table>
<thead>
<tr>
<th>Day</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td></td>
</tr>
</tbody>
</table>

Trip count in each hour on Tue and Sat

![Graph showing trip count in each hour on Tue and Sat]

Trip density in the TAZ level in the whole week

![Map showing trip density in the TAZ level]

- Trips per sqkm:
 - 0
 - 0.1 - 2089.8
 - 2089.9 - 9538.4
 - 9538.5 - 26293.1
 - 26293.2 - 320152.6
Count of bus ridings for each TAZ

0:00-1:00
Special attention paid to fixed-fare trips

• Distance-fare
 – With full spatiotemporal information
• Fixed-fare
 • Only arrival time and stop ID
 • No departure time and stop ID
The Beijing Household Travel Survey
(The 2005 survey)

• Conducted in 2010 for the whole BMA
• 81,760 households/208,290 persons, with 1.36% sampling rate
 – 800 thousand trips
• Information included:
 – Socio-economic attributes of household and persons
 – One-day travel diary of each person
 • Mode, purpose (e.g. commute), OD, departure and arrival time, etc.
• For setting rules for identifying jobs-housing places and commuting trips
3 APPROACH
Data preprocessing

- Data cleaning
 - Abnormal records due to inappropriate operation on fare machines
- Merge adjacent trips for each cardholder
 - Converting segments into real trips
- Geocode the SCD
 - by linking the bus stop ID in the SCD with the bus stop layer.
- Combine trips of each cardholder
 - to retrieve cardholder’s full bus travel diary
- Two data models proposed for identifying commuting pattern
 - PTD: Position-start Time-Duration
 - For identifying housing-jobs places
 - \{H0, 18:00 (-1), 13 h\} and \{J0, 8:00, 9h\}
 - TRIP: departure / arrival time and space
 - For identifying commuting trips
 - \{H0, 7:00, J0, 8:00\} and \{J0, 17:00, H0, 18:00\}
Identification of housing places using one-day data

• The departure bus stop of the first trip (TRIP1) will be the housing place of a cardholder.

• Grounded on:
 – In the 2005 survey, 99.5% person’s first trips start from home

• Note that a person is assumed to live around the identified stop with a maximum distance of 750 m
 – Retrieved from walking trips in the 2005 survey
 – This could be the spatial resolution of our identification results
Identification of job places using one-day data

• An activity of a non-student (except at home) with a duration longer than 6 hours is assumed to be working.
 – If:
 • Condition 1: The card type is not the student card
 • Condition 2: $D_k > 360$
 • Condition 3: $k \neq 1$
 – he/she is sleeping at home when $k=1$
 – Then:
 • the k_{th} place P_k will be regarded as the job place of this cardholder

• Grounded on:
 – In the 2005 survey, 96% persons work over 6 hours per day.
Combining each day’s result to get more solid housing-jobs places

• One day result might not be stable, e.g.
 – A shopping, hospital, or creation activity longer than 6 h
 – One night sleeping at a friend’s home

• Periodic pattern of cardholders with identified housing-jobs results like
 – M T W T F S S
 – a a a b a a a (Person 1)
 – a a a b b b c (Person 2)
 – a a b b c c d (Person 3)
• A decision tree for combining seven daily result
 – A complex procedure
• For aaabbbbc pattern:
 – Housing or job potential of each stop
 – “a” with a higher housing potential was selected as the final housing place of Person 2
Identification of commuting trips

• Limited to those cardholders with both identified housing and job places.

• Rules used:
 – The boarding bus stop of the first trip in a day is the identified housing place.
 – The job place appears in trips of a day.
 – Both the housing and job places are identified in the same day.

• Commuting time and distance are calculated for each identified commuting trip.
4 RESULTS
1,045,785 cardholders (12.2% of all 8549072 cardholders) are identified with housing places, and 362,882 cardholders (4.2% of all) are identified with job places.

Cardholder density with an identified **housing place**

Cardholder density with an identified **job place**
Commuting trips identification

221,773 cardholders identified with commuting trips

Average commuting time and distance for each TAZ
Comparing with existing researches

<table>
<thead>
<tr>
<th>Name</th>
<th>Travelling modes and year</th>
<th>Sample size</th>
<th>Average commuting time (min)</th>
<th>Average commuting distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our commuting trips</td>
<td>Bus, 2008</td>
<td>221773</td>
<td>36.0 (24.2)</td>
<td>8.2 (7.0)</td>
</tr>
<tr>
<td>The 2005 survey</td>
<td>Bus, 2005</td>
<td>6651</td>
<td>40.5 (23.1)</td>
<td>8.4 (8.3)</td>
</tr>
<tr>
<td>Liu and Wang, 2011</td>
<td>Bus, 2007</td>
<td>307</td>
<td>46.3 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Wang and Chai, 2009</td>
<td>Bus, 2001</td>
<td>227</td>
<td>55.1 (30.4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Zhao et al, 2011</td>
<td>Bus and metro, 2001</td>
<td>220</td>
<td>52.4 (26.6)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note that the number in the bracket is the standard deviation of the average commuting time and distance. Except our commuting trips, bus samples in other researches are extracted from the whole survey with all travelling modes.
Bus commuting pattern

- Where to where
- Extreme commuting
• Aggregated in the TAZ level
• The head/tail division rule used
• Policy suggestion on BRTs
Commuting trips from

Commutes from main residence communities
Commutes to main business zones (1)
Commutes to main business zones (2)
Only 302 commuting trips (0.14% of all identified trips) are from 3 residence communities to 6 business zones in Beijing.
5 CONCLUSIONS AND DISCUSSION
Concluding remarks

1. Propose an **algorithm** for identifying housing-jobs places as well as commuting trips using rules extracted from
 - the 2005 household travel survey
 - land use pattern of Beijing

2. Identification results are **acceptable** via comparing with the 2005 survey and existing researches

3. Analyse and map Beijing bus commuting **pattern**
 - Extreme commutes
 - Mainstream of bus commutes
 - Commutes from typical residential communities and to business zones

4. SCD could be a substitute of conventional travel surveys, at least a **complement**.
Our contribution: A promising solution for analyzing urban dynamics

• Mining LBS data using conventional surveys and urban GIS layers with sound validation results
• A decision tree for determining the final one-week result using periodic information and spatial distribution of one-day result
• Retrieve Beijing commuting pattern with more accurate spatial info and more samples in contrast to existing researches using surveys
 – Although limited to bus riders
Next steps

• Analyze SCD in 2010 with extra subway ridings
 – One week in April, 2010
 – 11 million cardholders
 – Share: 11.5% subway + 21.2% bus = 40%

• Move focus on non-commuting trips
 – Identify other activities combining POIs
 • Shopping
 • Recreation
Questions?

longying1980@gmail.com